References

555

26 Dias, A.B., Müller, C.M.O., Larotonda, F.D.S., and Laurindo, J.B. (2010).

Biodegradable films based on rice starch and rice flour. Journal of Cereal Science

51 (2): 213–219. https://doi.org/10.1016/j.jcs.2009.11.014.

27 Ge, Y., Li, Y., Bai, Y. et al. (2020). Intelligent gelatin/oxidized chitin nanocrystals

nanocomposite films containing black rice bran anthocyanins for fish freshness

monitorings. International Journal of Biological Macromolecules 155: 1296–1306.

https://doi.org/10.1016/j.ijbiomac.2019.11.101.

28 Bhuimbar, M.V., Bhagwat, P.K., and Dandge, P.B. (2019). Extraction and

characterization of acid soluble collagen from fish waste: development of

collagen-chitosan blend as food packaging film. Journal of Environmental Chemi-

cal Engineering 7 (2): 102983. https://doi.org/10.1016/j.jece.2019.102983.

29 Gómez-Guillén, M.C., Ihl, M., Bifani, V. et al. (2007). Edible films made from

tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves

(Ugni molinae Turcz). Food Hydrocolloids 21 (7): 1133–1143. https://doi.org/10

.1016/j.foodhyd.2006.08.006.

30 Jeya Shakila, R., Jeevithan, E., Varatharajakumar, A. et al. (2012). Comparison of

the properties of multi-composite fish gelatin films with that of mammalian

gelatin films. Food Chemistry 135 (4): 2260–2267. https://doi.org/10.1016/j

.foodchem.2012.07.069.

31 Benbettaïeb, N., O’Connell, C., Viaux, A.S. et al. (2019). Sorption kinetic of

aroma compounds by edible bio-based films from marine-by product macro-

molecules: effect of relative humidity conditions. Food Chemistry 298 (May):

125064. https://doi.org/10.1016/j.foodchem.2019.125064.

32 Valdivia-López, M.A., Tecante, A., Granados-Navarrete, S., and Martínez-García,

C. (2016). Preparation of modified films with protein from grouper fish. Interna-

tional Journal of Food Science 2016 https://doi.org/10.1155/2016/3926847.

33 Hosseini, S.F., Rezaei, M., Zandi, M., and Farahmandghavi, F. (2016). Devel-

opment of bioactive fish gelatin/chitosan nanoparticles composite films with

antimicrobial properties. Food Chemistry 194: 1266–1274. https://doi.org/10.1016/

j.foodchem.2015.09.004.

34 Mohamed, S.A.A., El-Sakhawy, M., and El-Sakhawy, M.A.M. (2020). Polysaccha-

rides, protein and lipid-based natural edible films in food packaging: a review.

Carbohydrate Polymers 238: 116178. https://doi.org/10.1016/j.carbpol.2020.116178.

35 Goy, R.C., Morais, S.T.B., and Assis, O.B.G. (2016). Evaluation of the antimicro-

bial activity of chitosan and its quaternized derivative on E. coli and S. aureus

growth. Brazilian Journal of Pharmacognosy 26 (1): 122–127. https://doi.org/10

.1016/j.bjp.2015.09.010.

36 Hamil, S., Baha, M., Abdi, A. et al. (2020). Use of sea urchin spines with chi-

tosan gel for biodegradable film production. International Journal of Biological

Macromolecules 152: 102–108. https://doi.org/10.1016/j.ijbiomac.2020.02.263.

37 Blanco-Pascual, N., Fernández-Martín, F., and Montero, P. (2014). Jumbo squid

(Dosidicus gigas) myofibrillar protein concentrate for edible packaging films and

storage stability. LWT – Food Science and Technology 55 (2): 543–550. https://doi

.org/10.1016/j.lwt.2013.10.025.